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A model for calculation of the parameters of a bipolar transistor has been proposed and the regularities of
their change in fast thermal treatment of ion-doped silicon layers have been established.

Speed and packing density are the main performance figures of very large-scale integrated circuits. One basic
method of increasing these parameters is the principle of proportional scaling, when we have a decrease in both the
topological and vertical dimensions of microcircuits, namely, the depth of the base and the emitter and the thickness
of dielectric, epitaxial, and current-conducting layers [1].

Since practical implementation of vertical scaling requires a considerable decrease in the depth of p–n junc-
tions formed, it is clear that to do this requires a reduction in the diffusional redistribution of the impurity of an ion-
doped layer in the process of its electric activation. The use of fast thermal treatment (FTT) in creating very
large-scale integrated circuits is preferred for this purpose [2].

The basic limiting factors in vertical scaling are the base-to-collector and collector-to-emitter p–n junction
electric breakdowns and the punch-through in the n–p–n transistor; these phenomena are caused by the avalanche mul-
tiplication of carriers in the epitaxial film and by the joining of depletion layers in the base region. Since these phe-
nomena are determined by the doping level and thickness of the corresponding layers, certain requirements are
imposed on them.

One basic parameter determining the operating capacity of a transistor is its direct current gain, which must be
no less than 80 for an n–p–n transistor. This brings up limitations on all the remaining electrical and geometric parame-
ters of the transistors formed. It is well known that such parameters as Uc.e, Uc.b, and βp are related as follows [3]:

Uc.e = Uc.b 




1
1 + βp





1 ⁄ 4 .
(1)

Calculation carried out on the basis of expression (1) has shown that the minimum required value βp = 80 is
attained under different combinations of Uc.e and Uc.b, e.g., for Uc.b = 9 V and Uc.e = 3 V or Uc.b = 12 V and
Uc.e = 4 V. However, the use of transistors with Uc.e < 3 V leads to a degradation of such circuit’s parameters as the
output voltage and the supply current. This means that the minimum possible breakdown voltages of the p–n junctions
of a transistor ensuring βn = 80 must have the following values: Uc.b = 9 V and Uc.e = 3 V (Fig. 1).

Using the numerical-simulation method, we consider the influence of the FTT process on the parameters of a
bipolar transistor. It is well known that an electric field of strength E(x) appears in the transistor under the action of
the voltage applied. Upon the attainment of the maximum value Emax dependent on the voltage applied and the con-
centration of the carriers in the epitaxial film or in the region of formation of a basic p–n junction, an avalanche
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breakdown of a reverse-biased collector-to-base junction occurs. The electric-field strength is described by a Poisson
equation which, in a one-dimensional approximation, has the form

∂E (x)
∂x

 = eε−1ρ (x) . (2)

Near the point x of the p–n junction, we have a disturbance in the neutrality of charge due to the movement
of mobile carriers to the points of application of external stress; in the region of the p–n junction, a depletion region
appears, in which expression (2) takes the form

∂E (x)
∂x

 = eε−1
N (x) . (3)

Since the field strength vanishes at the boundaries of the depletion region (xu, xlow), and the ionization integral is
equal to unity, expression (3) may be written in the form

∂2ϕ (x)

∂x
2  = eε−1

N (x) . (4)

Multiplying both sides of (4) by x and integrating from xu to xlow on condition that the field strength at the
boundaries of the depletion region is equal to 0 and the voltage drop is equal to the potential difference applied, we
obtain the expression for the breakdown voltage of the collector-to-base junction

Uc.b = eε−1
  ∫ 
xu

xlow

 xN (x) dx . (5)

However, despite the simplicity of the integrand of the integral

  ∫ 
xu

xlow

 A exp 


− B [E (x)]−1

 dx = 1 , (6)

it is poorly specified, has a very sharp maximum at a point of the collector p–n junction (xc), and is fast decreasing
with distance from the point xc. To semianalytically compute the integrand with a high degree of accuracy and in
minimum time we expand the exponent in a Taylor series near xc, restricting ourselves to its first terms:

Fig. 1. Direct current gain of the n–p–n transistor vs. collector-to-base break-
down voltage: 1) Uc.e = 2 and 2) 4 V. Uc.b, V.

618



exp 


− B [|E (x)|]−1

 = exp − BEmax
−1 

 



1 + [N ′ (xc) (x − xc)] (2Emax)

−1
 



 . (7)

Substituting (7) into (6) and integrating from minus to plus, which is possible in view of the very fast drop
in the integrand, we obtain the transcendental equation for determination of the maximum strength Emax

A exp (− BEmax
−1 ) = Emax

−1
 



[B N ′ (xc)] (2π)−1

 




1 ⁄ 2
 . (8)

After the iterative solution of (8) and determination of Emax by integrating in both directions from the point xc, we
determine the boundaries of the depletion region xu and xlow so that the condition










∫ 
xu

xc

N (x) dx










 = 










 ∫ 
xc

xlow

 N (x) dx






 = Emax (9)

is fulfilled.
Using (5) we find the avalanche-breakdown voltage; to determine this in the case of the basic p–n junction,

we must know the impurity distribution in the depletion region and the position of its boundaries in breakdown. Since
the first is dependent on the regimes of ion doping of the base, FTT, and epitaxial growth, we consider the influence
of these parameters on Uc.b.

An analysis of the experimental distributions of boron in the base region and antimony in the latent layer by
the least-squares method has shown that in the first case the distribution obeys the Gaussian distribution, whereas in
the second case it obeys the Fermi distribution:

NSb
0

 (x) =  
Nmax exp [(x − z) b−1

]

1 + exp [(x − z) b−1
]

 , (10)

NSb (x)
b=0

 = Nmaxx ≥ z ;   NSb (x)
b=0

 = 0 ,   x < z . (11)

For the chloride-hydride technology of epitaxial growth, which is used in producing thin epitaxial films, we have ex-
perimentally determined the value b = 0.073 µm. The impurity distribution after the FTT was determined by solution
of the equation

N (x) = D 



[2π (2D

∗
 + ∆Rp

2)]1 ⁄ 2 erfc [− Rp (√2  ∆Rp)
−1

]




−1

 ×

× ∑ 

i=%

exp − (x − iRp)
2
 (4D

∗
 + 2∆Rp

2)−1
 erfc (− θi) , (12)

where θ% = 



%x[∆Rp

2(2D∗)−1]1 ⁄ 2 + Rp[2D∗(∆Rp
2)−1]1 ⁄ 2


(4D∗ + 2∆Rp

2)−1 ⁄ 2 and D∗ = ∑ 

i=1

m

∫ 
0

ti

D
∨

[T(t)]dt; ti = τi + τi′.

For boron after ionic doping it is described by the expression [2]

NB
0

 (x, t = 0) = D (2π∆Rp
2)−1 ⁄ 2 exp 




− [(x − Rp) (√2  ∆Rp)

−1
]
2


 , (13)

where Rp = 85.6E0.777 and ∆Rp = 1760E0.106 − 1990E0.0192.
In FTT with M pulses, the impurity distribution in the case of boron takes the following form:
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NB (x) = D [2π (∆Rp
2
 + 2D

∨
M)]−1 ⁄ 2 exp [− (x − Rp)

2
 (2∆Rp

2
 + 4D

∨
M)−1

] ∫ 
0

∞

F (z′, x) dz′ +

+ exp [− (x + Rp)
2
 (2∆Rp

2
 + 4D

∨
M)−1

] ∫ 
0

∞

F (z′, − x) dz′ , (14)

where D
∨

 = ∫ 
0

t

D(t′)dt′ and F(z′, x) = exp 


−z′ + [(x∆Rp)(2D

∨
M)−1 ⁄ 2 + Rp (2D

∨
M∆Rp

−2)1
 ⁄ 2](4D

∨
M + 2∆Rp

2)−1 ⁄ 2


, whereas in

the case of antimony it appears as

NSb (x) = 
1
√π

 ∫ 
−∞

+∞

exp (− y
2) NSb

0
 (γy + x) dy ,   γ = 2 







M ∫ 

0

t

DSb (t′) dt′







1 ⁄ 2

 . (15)

Since γ is a small quantity, the product γy may be disregarded if the variable x lies in the region not adjacent to z.
This condition is fulfilled for E ≥ 60 keV and an epitaxial-film thickness less than 1.0 µm, and expression (15) may
be written as follows:

NSb (x) = 
1
√π

 NSb
0

 (x) ∫ 
−∞

+∞

exp (− y
2) dy = NSb

0
 (x) . (16)

This means that FTT virtually does not change the antimony-distribution profile and consequently we may disregard it.
Thus, the total impurity distribution may be represented as

N (x) = NB (x) − NSb (x) − Ne.f . (17)

To study the distinctive features of change in the gain of a common-emitter βn and common-collector n–p–n
transistor βi in its creation with the use of FTT we consider one-dimensional continuity and transfer equations for mi-
nority carriers: holes in the emitter and in the latent layer and electrons in the base for outer potentials not leading to
avalanche multiplication. In this case the transfer physics is determined by the slight deviation of the configuration of
carriers from a uniform concentration, and the equations have the form

dI
dx

 = eτ−1
fmin (x) , (18)

I = − eDminF 
d
dx

 



fmin (x) [F (x)]−1



 , (19)

where F(x) = 



nintr

2  exp [∆Eg(kT)−1]




2
[N(x)]−1, nintr

2  = 9.61⋅1032T 3 exp [−Eg(kT)−1].

Equations (18) and (19) must be supplemented with two boundary conditions that will be different for each
transistor region (emitter, base, or collector) and for direct and inverse connections. For transistors with micron and
submicron depths of p–n junctions, the minority-carrier lifetime may be assumed to be very long, i.e., the right-hand
side of Eq. (18) may be considered as a perturbation and the solution of the system of equations (18) and (19) may
be sought by the perturbation-theory method with a small parameter τ−1. Then, in the zero approximation in τ−1 I =
const and with allowance for the fact that the concentration of excess minority carriers is expressed in terms of the
voltage U applied to the p–n junction by the relation
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fmin (x) = F (x) 



exp [eU (kT)−1

] − 1



 , (20)

we obtain that, in direct connection, the density of the hole current in the emitter is

Ip = e 



exp [eUe.b (kT)−1

] − 1



 nintr

2
 










  ∫ 

0

xe.b

 [(Np − Nn) Dp
−1

] exp [− ∆Eg (kT)−1
] dx











−1

 , (21)

and the density of the electron current in the base is

In = e 



exp [eUe.b (kT)−1

] − 1



 nintr

2
 










  ∫ 
xe.b

xc.b

 [(Nn − Np) Dn
−1

] exp [− ∆Eg (kT)−1
] dx











−1

 . (22)

Consequently, the current gain in the common-emitter circuit will be

βn = 
In

Ip
 . (23)

In inverse connection, the density of the electron current in the active base is equal to

Ina = enintr
2

 exp eUc.b (kT)−1
 









  ∫ 
xe.b

xc.b

 [(Nn − Np) Dn
−1

] exp [− ∆Eg (kT)−1
] dx











−1

 , (24)

and in the passive one, it is

Inp = enintr
2

 exp eUc.b (kT)−1
 ×

× 










  ∫ 

0

xc.b

 [(Nn − Np) Dn
−1

] exp [− ∆Eg (kT)−1
] dx + Nn (0) exp [− ∆Eg (kT)−1

] Vb
−1










−1

 . (25)

The density of the hole current in the transition region of the latent layer is determined by the expression

Iplat.layer = enintr
2

 exp eUc.b (kT)−1
 ×

× 










  ∫ 
xe.b

xc.b

 [(Np − Nn) Dn
−1

] exp [− ∆Eg (kT)−1
] dx + Np (h) exp [− ∆Eg (kT)−1

] (Vlat.layer
′ )−1

 











−1

 ×

× 










1 + Np (h) exp [− ∆Eg (kT)−1

] (Vlat.layer′ )−1
  ∫ 
xe.b

xc.b

 exp [− ∆Eg (kT)−1
] [τ (x) Np (x)]−1

 dx 










 . (26)

In this case the gain in the common-collector circuit will be described by the expression

βi = Se.bIna [(Sc.b − mSe.b) Inp + Sc.bIplat.layer]
−1

 . (27)
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It is noteworthy that (21)–(26) involve the parameter ∆Eg which characterizes the narrowing of the energy gap
for high doping layers and is a quantity determinable experimentally and dependent on the impurity concentration. In
our case the narrowing of the energy gap correlated with the Mott transition.

Numerical modeling has enabled us to establish the following regularities. When thin epitaxial layers (0.6–1.0
µm) are used, the base p–n junction is formed in the transition layer epitaxial film–latent n+ layer; increase in both
the energy and the doping dose leads to an increase in the depth of formation of the p–n junction. Decrease in the
thickness of the epitaxial film causes the p–n junction depth to decrease for constant regimes of doping of the base.
The reason is that, when the impurity distribution in the base is preserved, the concentration of the carriers in the re-
gion of formation of the base junction grows and consequently its depth decreases. Increase in the number of FTTs
leads to growth in the depth of the base (Fig. 2); the energy of its doping increases with decrease in the impurity re-
distribution. The reason is that the concentration of the carriers in the region of the p–n junction grows with doping
energy; as a consequence, the diffusion coefficient of boron decreases, which causes the impurity redistribution to de-
crease. The regularities enumerated above lead to a reduction in Uc.b.

The main reason for such a functional dependence of the base-to-collector breakdown voltage on the techno-
logical parameters is the proximity of the latent n+ layer to the base, since in this case a charge gradient exists in the
depletion region, which leads to the presence of strong electric fields affecting Uc.b. These calculations have enabled
us to establish that to ensure Uc.b ≥ 9 V the carrier concentration in the epitaxial layer or in the region of the base

Fig. 2. Depth of the base vs. number of FTTs for different energies of its dop-
ing (Dd = 6.5 µC/cm2): 1) 20, 2) 60, and 3) 80 keV. z, µm.

Fig. 3. Collector-to-base breakdown voltage vs. epitaxial-layer thickness for
different energies of boron doping of the base (Dd = 6.5 µC/cm2): 1) 20, 2)
60, and 3) 80 keV. Uc.b, V. z, µm.

Fig. 4. Collector-to-base breakdown voltage vs. number of FTTs for different
energies of boron doping of the base (Dd = 6.5 µC/cm2): 1) 60 and 2) 80
keV. Uc.b, V.
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p–n junction must satisfy the condition N ≤ 1017 cm−3 (Fig. 3), and the minimum thickness of the epitaxial film must
be 0.6 µm (Fig. 4) for an energy of doping of the base of 50 keV.

Calculation of the gains βn and βi as functions of the thickness of the epitaxial layer and the layer of its dop-
ing and the regimes of formation of the base and the emitter with the use of FTT has enabled us to draw the follow-
ing conclusions. Increase in the thickness of the epitaxial film (Fig. 5a) and decrease in the concentration of carriers
in it (Fig. 5b) lead to a reduction in the gain of a bipolar transistor, which is caused by the decrease in the concen-
tration of carriers in the region of the base p–n junction. For an epitaxial-film thickness of more than 1 µm the base
p–n junction is in the epitaxial film with a constant concentration of carriers of 1016 cm−3; it is no longer in the tran-
sition region of the latent layer; therefore, further increase in the film thickness does not cause the gain to change.
Growth in the direct and inverse gains with decrease in the dose and energy of doping of the base and with increase
in the dose and energy of doping of the emitter is caused by the decrease in the width of the active base, the increase
in the emitter efficiency, and the reduction in the time of transit of the carriers through the base. Growth in the am-
plifying properties of the n–p–n transistor with increase in the density of the incident-radiation power and decrease in
the reflection coefficient of the irradiated surface is related to the increase in the temperature of the treated wafer and
consequently to the increase in the impurity redistribution, which is the strongest in the emitter region.

NOTATION

A and B, constant quantities equal to 7.03⋅105 cm−1 and 1.231⋅106 cm−1 respectively; D, diffusion coefficient,
cm2⋅sec−1; Dmin, diffusion coefficient of minority carriers, cm2⋅sec−1; Dd, doping dose, µC/cm2; E, electric-field
strength, V⋅m−1; Eg, energy gap width (energy gap), eV; e, electron charge; F(x), equilibrium concentration of carriers,
cm−3; fmin, nonequilibrium concentration of minority carriers, C; h, transition-layer thickness, µm; I, current density,
A⋅cm−2; k, Boltzmann constant, eV/ oC; M, number of pulses; m, number of emitters; N, concentration of the impurity,
cm−3; N ′(xc), derivative of distribution of the implanted impurity at the point xc; Ne.f, concentration of carriers in the
epitaxial film, cm−3; nintr, intrinsic concentration of charge carriers, cm−3; Rp, projection of the ion path, nm; ∆Rp,
standard deviation of the projection of the ion path, nm; S, area of the p–n junction, µm2; T, temperature, oC; ti, total
time of one ith treatment, sec; U, voltage, V; Vb, rate of recombination of electrons on the base contact, sec−1;
Vlat.layer
′ , rate of recombination of holes on the latent-layer surface, sec−1; x, running coordinate; y, integration variable;

z, thickness of the epitaxial layer, µm; β, gain; ε, dielectric constant, F⋅m−1; ρ(x), electric charge at the point x, C; τ,
lifetime of minority charge carriers, sec; τi, time of one ith treatment, sec; τi′, time of cooling of the silicon wafer after
the ith process of FTT, sec; ϕ, electric potential, V. Subscripts and superscripts: a, active; b, base, c, collector; c.b,
collector-to-base; c.e, collector-to-emitter; d, doping; p, passive; lat. layer, latent layer; intr, intrinsic; min, minority
charge carriers; e.b, emitter-to-base; e.f, epitaxial film; i, inverse connection of the transistor; u, upper boundary; low,
lower boundary; max, maximum value; n, normal connection of the transistor; n, electronic (n-type) conduction; p,
hole (p-type) conduction; g, gap.

Fig. 5. Direct (1) and inverse (2) current gains of the n–p–n transistor vs.
thickness of the epitaxial film (a) and concentration of charge carriers in it (b).
µm; Ne.f, cm−3.
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